Some Identities on the q-Genocchi Polynomials of Higher-Order and q-Stirling Numbers by the Fermionic p-Adic Integral on ℤp
نویسندگان
چکیده
Let p be a fixed odd prime number. Throughout this paper, Zp,Qp,C, and Cp denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the completion of the algebraic closure of Qp, respectively. Let N be the set of natural numbers and Z N ∪ {0}. Let vp be the normalized exponential valuation of Cp with |p|p p−vp p 1/p. When one talks of q-extension, q is variously considered as an indeterminate, a complex q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, then one normally assumes |q| < 1. If q ∈ Cp, then we assume |q − 1|p < 1. In this paper, we use the following notation:
منابع مشابه
Symmetry Fermionic p-Adic q-Integral on ℤp for Eulerian Polynomials
Kim et al. 2012 introduced an interesting p-adic analogue of the Eulerian polynomials. They studied some identities on the Eulerian polynomials in connection with the Genocchi, Euler, and tangent numbers. In this paper, by applying the symmetry of the fermionic p-adic q-integral on Zp, defined by Kim 2008 , we show a symmetric relation between the q-extension of the alternating sum of integer p...
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملNOTE ON THE GENERALIZATION OF THE HIGHER ORDER q-GENOCCHI NUMBERS AND q-EULER NUMBERS
Cangul-Ozden-Simsek[1] constructed the q-Genocchi numbers of high order using a fermionic p-adic integral on Zp, and gave Witt’s formula and the interpolation functions of these numbers. In this paper, we present the generalization of the higher order q-Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers and polynomials, and w-Genocchi numbers ...
متن کاملSOME NEW SYMMETRIC IDENTITIES INVOLVING q-GENOCCHI POLYNOMIALS UNDER S4
In the paper, we derive some new symmetric identities of q-Genocchi polynomials arising from the fermionic p-adic q-integral on Zp.
متن کاملCalculating Zeros of the q-Genocchi Polynomials Associated with p-adic q-Integral on ℤp
In this paper we construct the new analogues of Genocchi the numbers and polynomials. We also observe the behavior of complex roots of the q-Genocchi polynomials Gn,q x , using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the q-Genocchi polynomials Gn,q x . Finally, we give a table for the solutions of the q-Ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010